Information Algebras and Consequence Operators
نویسندگان
چکیده
We explore a connection between different ways of representing information in computer science. We show that relational databases, modules, algebraic specifications and constraint systems all satisfy the same ten axioms. A commutative semigroup together with a lattice satisfying these axioms is then called an “information algebra”. We show that any compact consequence operator satisfying the interpolation and the deduction property induces an information algebra. Conversely, each finitary information algebra can be obtained from a consequence operator in this way. Finally we show that arbitrary (not necessarily finitary) information algebras can be represented as some kind of abstract relational database called a tuple system.
منابع مشابه
POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کاملWeighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces
In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملGeneralized essential norm of weighted composition operators on some uniform algebras of analytic functions
We compute the essential norm of a composition operator relatively to the class of Dunford-Pettis opertors or weakly compact operators, on some uniform algebras of analytic functions. Even in the frame of H∞ (resp. the disk algebra), this is new, as well for the polydisk algebras and the polyball algebras. This is a consequence of a general study of weighted composition operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logica Universalis
دوره 1 شماره
صفحات -
تاریخ انتشار 2007